Department of Mechanical Engineering

Faculty of Engineering and Architecture

Closed book
 Scientific calculators are allowed
 Return the entire question booklet and other scratch sheets to the instructor Show all your work for full credit and circle your answers

April 11, 2012
Duration: 90 minutes

Question	Grade
1	130
2	$/ 20$
3	130
4	$/ 20$
Total	

Name	
Student ID	

Good luck

Problem \#1: (30)

The mass m is attached to a rigid lever having negligible mass and negligible friction in the pivot. The input is the displacement x. When x and θ are 0 , the springs are at their free length. Assuming that θ is small, solve the following:
a) The free body diagram of the lever
b) The equations of motion for θ with x as the input
c) The equations of motion in terms of the appropriate state variables

a) FBD

$C C W: \theta$
$C W: J \ddot{\theta}=m L_{3}^{2} \ddot{\theta}$
$C W: L_{1} f_{k_{1}}=L_{1} k_{1}\left(L_{1} \theta\right)$
$C W: L_{2} f_{k_{2}}=L_{2} k_{2}\left(L_{2} \theta-x\right)$
$C W: m g L_{3} \sin \theta=m g L_{3} \theta$

b) EOM

$m L_{3}^{2} \ddot{\theta}+L_{1} k_{1}\left(L_{1} \theta\right)+L_{2} k_{2}\left(L_{2} \theta-x\right)+m g L_{3} \theta=0$
$\Rightarrow m L_{3}^{2} \ddot{\theta}+\left(k_{1} L_{1}^{2}+k_{2} L_{2}^{2}+m g L_{3}\right) \theta=k_{2} L_{2} x$
c) State variables
$\binom{\dot{\theta}}{\dot{\omega}}=\binom{\omega}{\frac{1}{m L_{3}^{2}}\left(k_{2} L_{2} x-\left(k_{1} L_{1}^{2}+k_{2} L_{2}^{2}+m g L_{3}\right) \theta\right)}$

Problem \#2: (20)

For the geared system shown below, assume that the shaft inertias and gear inertias, I_{1}, I_{2}, and I_{3} are negligible. The motor and load inertias are I_{4} and I_{5}, respectively. The speed ratios are

$$
\frac{\omega_{1}}{\omega_{2}}=\frac{\omega_{2}}{\omega_{3}}=N
$$

Derive the following:
a) The free body diagrams
b) The system model in terms of the speed ω_{3}, with the applied torque T as the input

$F B D: I_{4}$
$C W: I_{4} \dot{\omega}_{1}$
CCW :T
$C W: f_{c} r_{1}$
$\Rightarrow I_{4} \dot{\omega}_{1}=T-f_{c} r_{1}$
$F B D: I_{5}$
$C W: I_{5} \dot{\omega}_{3}$
$C C W: f_{c} r_{3}$
$I_{5} \dot{\omega}_{3}=f_{c} r_{3}$
$\frac{r_{3}}{r_{1}}=\frac{\omega_{1}}{\omega_{3}}=\frac{\omega_{1}}{\omega_{2}} \frac{\omega_{2}}{\omega_{3}}=N^{2}$
$f_{c}=\frac{1}{r_{1}}\left(I_{4} \dot{\omega}_{1}-T\right)$
$\Rightarrow I_{5} \dot{\omega}_{3}=-f_{c} r_{3}=\frac{r_{3}}{r_{1}}\left(T-I_{4} \dot{\omega}_{1}\right)$
$\Rightarrow\left(I_{5}+N^{4} I_{4}\right) \dot{\omega}_{3}=N^{2} T$

Problem \#3: (30)

Assume the cylinder below rolls without slipping. Neglecting the mass of the pulleys and derive the following:
a) The free body diagrams
b) The equation of motion of the system in terms of the displacement x
c) The equations of motion in terms of the appropriate state variables

Hint: Do a summation of moments about the point of contact between the cylinder and the table.

Problem \#4: (20)

Given a motor with inertia I_{m} with a drive torque T that is connected to a pinion with inertia I_{p} and radius R. The shaft connecting the to motor to the pinion has a stiffness of k_{t}. The pinion is driving a rack whose mass is m_{r}. The rack has a spring attached to it and is fighting a viscous friction with coefficient c as shown below.

Derive the governing equation or system of equations of the system below.

